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Abstract
Auger capture of majority carriers by a charged edge dislocation in n-type
semiconductors is considered in the case of weak saturation of the dangling
bonds existing on the dislocation core. The dependence of the capture radius
on the depth of the one-dimensional dislocation band and on temperature is
obtained. Values of temperature and free electron concentration are estimated
when Auger capture is the dominant mechanism of nonradiative recombination
in crystals with dislocations.

1. Introduction

The recent experimental investigations of luminescence in semiconductors with structural
defects revealed that dislocations had a significant effect, resulting in luminescence quenching
(Vernon-Parry et al 2001). The role of dislocations in recombination processes becomes more
apparent in thin-film heterostructures, where a high concentration of dislocations is inevitable.
A luminescence study in the quantum wells of gallium-nitride based heterostructures showed
that the screw and edge dislocations act as nonradiative recombination centres; the straight
edge dislocations decay the luminescence more strongly than do screw and mixed dislocations
(Cherns et al 2001). This effect may be attributed to the existence of dangling bonds near
the edge dislocation core which create a deep and narrow energy band in the semiconductor
bandgap.

The carrier statistics in a semiconductor with dislocations can be described by the
Shockley–Reed theory using the quantum-mechanical capture radii for different recombination
mechanisms (Gulyaev 1961). The probabilities of nonradiative transitions of carriers to the
dislocation band due to their interaction with phonons were evaluated in (Vardanian 1977,
Vardanian et al 1988). The edge dislocation in a semiconductor carries the charge of majority
carriers; therefore it is surrounded by an electrostatic field that causes bending of the energy
bands. For minority carriers the charged dislocation is an attraction centre and the capture to
this centre is described by the Lax cascade mechanism (Vardanian 1977). Meanwhile, for the
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majority carriers the electrostatic field is a barrier and the carrier transition to a dislocation
level is accompanied by a single multiphonon process (Vardanian et al 1988).

In the case of relatively low temperatures, when the probability of multiphonon transitions
decreases, and at high carrier concentrations an impact mechanism of recombination (Auger
process) can prevail when the released energy transfers to another carrier (for a review see
Landsberg (1970), Robbins (1980)). The study of electron Auger capture by the charged edge
dislocation in an n-type semiconductor and the determination of conditions when the impact
recombination dominates over multiphonon recombination are the purposes of this paper.

2. Dislocation model; electron wavefunctions

In n-type semiconductors the edge dislocation carries a negative charge due to the saturation
of a part of the dangling bonds by electrons, therefore it is surrounded by a cylinder of ionized
donor impurities. The positive charge of this cylinder with a radius ρion is screened by free
carriers at the Debye distance ρD. The relation of lengths ρion and ρD depends on the degree
of filling of the dislocation states, i.e. on the relation of the distances between saturated and
dangling bonds, which is determined by the temperature and can be characterized by the
parameter α = e2/εcκT —the ratio of the interaction energy of the saturating electrons to their
thermal energy (here ε is the dielectric constant, κ is the Boltzmann constant and c = c(T ) is
the temperature-dependent distance between saturated states). Further analysis will be carried
out for high enough temperatures when the criterion of weak filling α � 1 is realized. Note
that under this condition the shallow donor levels are completely ionized (i.e. κT � Edonor), so
that in the heavily doped semiconductors the concentrations of free electrons can be sufficiently
high to provide efficient impact recombination.

At the considered temperatures the radius ρion is related to Debye radius ρD as follows
(Vardanian 1977)

ρion = 2ρD

γ
exp

{
− 1

2α

}
,

ρD =
(

εκT

4πnde2

)1/2

where nd is the donors concentration, and ln γ = 0.577 is Euler’s constant. At these
temperatures a condition ρion � ρD holds and the electrostatic barrier energy of the straight
dislocation at distancesρ from the dislocation less than ρD is given by the expression (Vardanian
1977)

U(ρ) ≈ 2ακT ln
2ρD

γρ
, a < ρ < ρD. (1)

Though the expression (1) is applicable at distances sufficiently in excess of the core size a
(here a � a0, a0 is the lattice constant), where the influence of the discrete structure of the
dislocation core can be neglected, this formula can be extrapolated down to the distance a.
At distances ρ < a the dislocation potential is approximated by a square well with the depth
providing energy levels for the electron capture. Schematically the dislocation potential is
represented in figure 1.

The wavefunction of the conduction band electron affected by the dislocation potential
can be found as the quasiclassical solution of the Schrödinger equation, taking account of the
potential energy (1). By matching the quasiclassical functions with an exact solution of the
wave equation in the region ρ < a, the electron wavefunction with energy E can be found



Auger recombination involving dislocations in semiconductors 8447

Figure 1. Schematic representation of the electrostatic barrier around the dislocation. The positive
charge of ionized donors (depletion region) is indicated by (+). The energy level ED is due to the
existence of a ‘chemical’ well at distances ∼a.

(Vardanian 1979). In cylindrical coordinates (ρ, ϕ, z) with the z-axis along the dislocation
line, one has the following view:

�k,m,kz =
(

k

4π RLz

)1/2

Rkm(ρ)e(ikz z+imθ), (2)

where k = (2µW/h̄2)1/2 is the radial wavenumber of the electron with effective mass µ,
W = E − h̄2k2

z /2µ, kz is the wavenumber along the z axis and m is the magnetic quantum
number. The wavefunction (2) is normalized to a cylinder with radius R and height Lz . The
radial component of the wave tunnelling through the barrier is described by the function

Rkm(ρ) =




Jm(βρ)

Jm(βa)

1

[|k(a)|a]1/2
exp

(
−

∫ ρm(k)

a
|k(ρ)| dρ

)
0 < ρ < a

1

[|k(ρ)|ρ]1/2
exp

(
−

∫ ρm(k)

ρ

|k(ρ)| dρ

)
a < ρ < ρm(k),

(3)

where

k(ρ) =
{

2µ

h̄2

[
W − U(ρ) − h̄2m2

2µρ2

]}1/2

,

while the turning point ρm(k) is determined by the condition k(ρm) = 0; Jm(x) is the Bessel
function of order m.

The wavefunction of an electron in the dislocation band describes two-dimensional
localization at the ground level ED and free motion along the dislocation. This wavefunction
was found without taking the influence of the deep dislocation states of the electrostatic field
into account (Vardanian 1979), which was justified by the weakness of the dislocation field in
comparison with the atomic fields:

�ED,m,kz =
(

β

πρLz

)1/2

e−βρe(ikz z+imθ) (4)

where β−1 = (h̄2/2µED)1/2 is the electron characteristic localization length.
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Figure 2. Auger capture of an electron at an energy level in the dislocation band.

3. Capture radius

According to Auger recombination general theory, a band carrier capture at a deep trap with
energy transfer to another carrier is described by means of two-particle wavefunctions. In the
case of electron capture at a charged dislocation, the initial state of the system is described
by the conduction electron tunnelling wavefunction � i

1 and a free electron wavefunction � i
2,

and the final state is described by the wavefunctions of an electron in the one-dimensional
dislocation band � f

1 and of a conduction ‘hot’ electron � f
2 (figure 2).

According to the wavefunction (3), the tunnelling probability decreases with an increase
in the electron magnetic quantum number m, due to an increase in the centrifugal potential
Uc = h̄2m2/2µρ2. Therefore it is meaningful only to consider electrons with m = 0 in the
initial state:

� i
1 =

(
k i

1

4π RLz

)1/2

Rki
10(ρ) exp(ik i

1z z). (5)

The free electron wavefunctions in cylindrical coordinates describe subwaves with
quantum numbers (k2, m2, k2z)

i and (k2, m2, k2z)
f in initial and final states:

� i
2 =

(
k i

2

2RLz

)1/2

Jmi
2
(k i

2ρ)eimi
2θ eiki

2z z

� f
2 =

(
kf

2

2RLz

)1/2

Jmf
2
(kf

2ρ)eimf
2θeikf

2z z .

(6)

The electron transition in the Auger process is caused by the Coulomb interaction between
two electrons. When the exchange interaction between electrons is disregarded, the electron
transition from the initial state i of the conduction band to the final state f in the dislocation
band is being described by the matrix element (Landsberg 1970)

Mif =
∫

� f∗
1 (ρ1, θ1, z1)�

f∗
2 (ρ2, θ2, z2)

e2

ε
√|ρ1 − ρ2|2 + (z1 − z2)2

× � i
1(ρ1, θ1, z1)�

i
1(ρ2, θ2, z2) dρ1 dz1 dρ2 dz2 (7)

where ρ is the two-dimensional radius vector. The description of the crystal as a dielectric
medium with constant ε down to small distances (most contributing to the matrix element) is
assumed in the Auger recombination theory.

Later in this work the capture process without transfer of magnetic momentum at the
interaction of electrons will be considered. This approximation corresponds to preserving in the
Coulomb interaction energy the monopole term only, since already in the dipole approximation
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(i.e. when the terms of order ρ1/ρ2 are preserved) momentum transfer is possible. The order
of magnitude of the dipole term can be estimated by taking into account that the first electron
distance from the dislocation is ρ1 ∼ a, while the characteristic interaction distance ρ2 − ρ1

must be of the order of the localization length β−1. Hence the terms containing the ratio ρ1/ρ2

are of order βa ∼ √
ED/Eg, where Eg is the bandgap. Even in the case of the considered deep

levels, these terms can be neglected when estimating the contribution of Auger processes to
the carrier recombination rate.

Thus, taking account of the wavefunctions (4)–(6), the matrix element (7) is equal to

Mif = D
∫

e−βρ1

√
ρ1

Rki
10(ρ1)Jmi

2
(k i

2ρ2)Jmf
2
(kf

2ρ2)
exp(ik i

1z z1 + ik i
2z z2 − ikf

1z z1 − ikf
2z z2)

ε

√
ρ2

2 + (z1 − z2)2

× e−imf
1θ1 ei(mi

2−mf
2)θ2ρ1 dρ1 dθ1 dz1 ρ2 dρ2 dθ2 dz2 (8)

where D = ( ki
1ki

2kf
2β

16π2 R3 L4
z

)1/2 e2

ε
. The angle integration gives Kronecker symbols δmi

10 and δmi
2mf

2
,

denoting the transitions without a transfer of the turning momentum. At z integration the
δ-function arises corresponding to conservation of momentum of the z-components:

Mif = 16π3 Dδ(k i
1z + k i

2z − kf
1z − kf

2z)

∫ ρ0(ki
1)

0

√
ρ1e−βρ1 Rki

1 0(ρ1) dρ1

×
∫ ∞

0
ρ2 Jmi

2
(k i

2ρ2)Jmi
2
(kf

2ρ2)K0(|kf
2z − k i

2z |ρ2) dρ2. (9)

Thus, in the approximation ρ2 � ρ1 the matrix element represents the product of two
independent integrals over ρ1 andρ2.

The upper limit of the integral over ρ1 can be taken as the turning point

ρ0(k
i
1) = 2ρD

γ
exp

[
− h̄2k i2

1

4µακT

]
,

since the electron localization length in the final state is β−1 � ρ0(k i
1) (at k i

1 values determined
by the thermal energy). According to wavefunctions (3) this integral represents a sum of
two integrals: over the square well region 0 < ρ1 < a and the region under the barrier
a < ρ1 < ρ0(k i

1). Due to two-dimensional localization of the captured electron, the main
contribution to the latest integral is made by the initial state wavefunction value at point a.
Noting that βa < 1, we obtain∫ ρ0(ki

1)

a

√
ρ1 exp(−βρ1)Rki

1,0
(a) dρ1 = 1

[|k i
1(a)|a]1/2

1

β3/2

√
π

2
exp

(
−

∫ ρ0(ki
1)

a
|k i

1(ρ)| dρ

)
.

(10)

In the same approximation βa < 1 the integral over the region (0, a) can be neglected. After
integration over ρ2 the matrix element is obtained as

Mif = 2
√

2π5/2

R3/2 L2
z

e2

εβa1/2
δ(k i

1z + k i
2z − kf

1z − kf
2z)

(
k i

1

|k i
1(a)|

)1/2

exp

(
−

∫ ρ0(ki
1)

a
|k i

1(ρ)| dρ

)

× (k i
2kf

2)
1/2

[(kf
2 − k i

2)
2 + (k i

2z − kf
2z)

2]1/2[(kf
2 + k i

2)
2 + (k i

2z − kf
2z)

2]1/2

×
(

[(kf
2 + k i

2)
2 + (k i

2z − kf
2z)

2]1/2 − [(kf
2 − k i

2)
2 + (k i

2z − kf
2z)

2]1/2

[(kf
2 + k i

2)
2 + (k i

2z − kf
2z)

2]1/2 + [(kf
2 − k i

2)
2 + (k i

2z − kf
2z)

2]1/2

)|mi
2|
. (11)

Due to the one-dimensionality of the dislocation band, only the z-component of the momentum
is conserved.
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Electron capture by the dislocation is characterized by means of the capture radius

r = W

LznvT
(12)

where n is the electron concentration, vT = (3κT/µ)1/2—average thermal velocity and W is
the capture probability

W = 2π

h̄

(
R

π

)3( Lz

2π

)4

Lz

∑
mi

2

∫
dk i

2 dk i
2z

∫
dkf

2 dkf
2z

∫
dk i

1 dk i
1z

∫
dkf

1z

× |Mif |2 P(k i
1, k i

1z, k i
2, k i

2z)δ(E i
1 + E i

2 − E f
1 − E f

2). (13)

Here P(k i
1, k i

1z, k i
2, k i

2z) is the electron distribution function in the initial states; a sufficient
number of empty states in the final states is assumed. The densities of states in the integrals
over k1, k2 are taken as R/π , which correspond to wavefunctions with a certain magnetic
momentum. For the non-degenerate semiconductor, the distribution P(k i

1, k i
1z, k i

2, k i
2z) is given

by the Boltzmann function:

P(k i
1, k i

1z, k i
2, k i

2z) = n2

N2
c

exp

{
− h̄2

2µκT
(k i2

1 + k i2
1z + k i2

2 + k i2
2z)

}

where Nc is the effective density of states in the conductivity band

Nc = 1

4

(
2µκT

π h̄2

)3/2

.

To evaluate the probability of electron capture into the narrow band (E f
1 ∼ ED � κT )

it is essential that the final state energy for the free conduction electron greatly exceeds the
initial state energy, which can be of the order of the thermal energy, i.e. E f

1 ∼ E f
2 � (E i

1, E i
2).

Therefore, assuming a square dispersion law for the conductivity electrons, the condition
kf2

2 + kf2
2z � k i2

2 + k i2
2z is obtained, allowing the use of an approximate relation in the matrix

element (11)

1

[(kf
2 − k i

2)
2 + (k i

2z − kf
2z)

2]1/2[(kf
2 + k i

2)
2 + (k i

2z − kf
2z)

2]1/2
≈ 1

kf2
2 + kf2

2z

,

which means that the characteristic interaction length has the order (kf2
2 + kf2

2z)
−1/2 ∼ β−1.

The m i
2 sum in (13) represents the sum of a decreasing geometrical progression which,

allowing for the condition (κT/ED) � 1, can be accepted as being equal to unity. Such
an approximation corresponds to only leaving in the sum a term with m i

2 = 0, i.e. the free
electrons with non-zero magnetic momentum give a small contribution to transitions. It also
directly follows from the conduction electron wavefunction (6) described by the Bessel function
Jmi

2
(k i

2ρ): at the characteristic interaction distance ρ ∼ β−1 the function Jmi
2
(k i

2β
−1) has a

maximal value at m i
2 = 0 with the condition that k i

2β
−1 � 1. At non-zero magnetic momentum

the centrifugal potential suppresses the electron wavefunction at distances of order β−1.
At accepted approximations the capture radius is equal to

r = 2π2h̄5ne4

(µκT )3ε2β2avT

∫
dk i

1 dk i
1z

∫
k i

2 dk i
2 dk i

2z

∫
kf

2 dkf
2 dkf

2z

× exp
{ − h̄2

2µκT (k i2
1 + k i2

1z + k i2
2 + k i2

2z)
}

kf2
2 + kf2

2z

k i
1

|k i
1(a)| exp

{
−2

∫ ρ0(ki
1)

a
|k i

1(ρ)| dρ

}

× δ(k i
1z + k i

2z − kf
1z − kf

2z)δ

(
h̄2kf2

2

2µ
+

h̄2kf2
2z

2µ
− ED − E(kf

1z)

)
. (14)
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The distinction between an Auger transition of a conduction electron to the one-dimensional
dislocation band and transitions to a valence band can be specified at this point. In the latter case
for the direct-gap semiconductors the preservation of the total momentum and energy prevents
electron transition into the valence band ceiling (Ridley 1982). Consequently, the minimal
released energy, which is the threshold energy for the inverse process (i.e. impact ionization),
exceeds the bandgap. Meanwhile, in the case of transition to a dislocation, transitions to a level
with kz = 0 are allowed. Then the second electron is ‘thrown out’ with the momentum vector
normal to the dislocation. In this respect the capture by a dislocation in an Auger transition is
similar to what happens in heterostructure quantum wells (Andreev and Zegrya 1997).

The electron dispersion E(kf
1z) in the narrow dislocation band differs from a simple square

law. Basically, the dispersion law can be found using a model of a chain of zero-dimensional
wells disposed in three-dimensional space (Demkov and Subramanian 1970) for the dislocation
description. In this model the dispersion law,as well as the effective mass of an electron moving
along the chain, is determined by an interaction of wells. In the case of a strong interaction,
the dispersion can be described by a strong coupling approximation. The more complicated
dispersion law arises in the case of the chain with a weak interaction between wells—the more
suitable model for a dislocation description. However, in this case the exponential reduction of
bandwidth is essential. As a result the dislocation bandwidth is less than its depth �ED � ED

and the definition of E(kf
1z) is not required; even neglecting the value of E(kf

1z) in comparison
with ED in the δ-function argument in (14), energy conservation is still fulfilled with enough
accuracy.

The integration over the final states of the conduction electron kf
2 and kf

2z can be made
using δ-function properties. After integrating over the final state of the captured electron kf

1z ,
we get

r = (2π h̄3)2ne4

µ2(κT )3ε2β2avT

1

(2µED)3/2

∫
dk i

1 dk i
1z

∫
dk i

2 dk i
2z

× exp

{
− h̄2

2µκT
(k i2

1 + k i2
1z + k i2

2 + k i2
2z)

}
k i

1k i
2

|k i
1(a)| exp

{
−2

∫ ρ0(ki
1)

a
|k i

1(ρ)| dρ

}
.

(15)

Now the integration over the initial states of the electron remains. Because of the
Boltzmann distributions the contribution to integrals on k i

2 and k i
2z is made by all states up

to energy κT and the integral is proportional to (κT )3/2, while after k i
1z integration the factor

(κT )1/2 arises. Thus, the capture radius becomes

r = (2π)3h̄ne4

κT ε2β2avT

1

(2µED)3/2

∫
k i

1

|k i
1(a)| exp

{
−2

∫ ρ0(ki
1)

a
|k i

1(ρ)| dρ

}
exp

{
− h̄2k i2

1

2µκT

}
dk i

1.

(16)

The subintegral function in (16) contains two exponential functions of k i
1. The first

function denotes a small probability of electron capture with large values of k i
1 because

of the Boltzmann distribution of particles. The second exponential function describes an
increase in capture probability with k i

1 growth, due to a high tunnelling probability through
the dislocation barrier. Notably, the argument of the second function itself depends on energy
exponentially, due to the logarithmic dependence of the dislocation field (1) on the distance:
at |k i

1(ρ)| = (4µακT/h̄2)1/2[ln(ρ0(k i
1)/ρ)]1/2 one has∫ ρ0(ki

1)

a
|k i

1(ρ)| dρ = 2ρD

γ

(
4µακT

h̄2

)1/2

exp

(
− h̄2k i2

1

4µακT

)
γ

(
3

2
, ln

(
ρ0(k i

1)

a

))
,

where γ (α, x) is an incomplete gamma-function.
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Thus, because of the presence of two ‘competing’ mechanisms of dependence on energy,
the greatest contribution to integral (16) is made by electrons with an energy W̃ which can be
determined by calculating the k i

1 integral by the method of steepest descent. Then the ‘saddle’
energy is obtained as

W̃ = h̄2k̃ i2
1

2µ
= 2ακT ln

[
2ρD

γ
(πµκT/αh̄2)1/2

]
, (17)

while the value of the integral is determined by the turning point at energy W̃

ρ0(W̃ ) = 2ρD

γ
exp

[
− W̃

2ακT

]
=

(
αh̄2

πµκT

)1/2

i.e. by the tunnelling distance of the electrons being most effectively captured.
Note that characteristic energy W̃ in the considered temperature range exceeds the thermal

energy κT . One can infer this fact from the quasiclassical approximation requirement that the
tunnelling distance must greatly exceed the electron wavelength, i.e. kρ0 � 1, limiting the
range of applicable temperatures. Writing down this condition for electrons with energy W̃
and taking into account that in the considered case the inequality α � 1 holds, we get

2απ−1/2

{
ln

[
2ρD

γ
(πµκT/αh̄2)1/2

]}
� 1

so that for the energy (17) the condition W̃ > κT is obtained.
Finally the capture radius value follows as:

r = r0

exp
{−2α

[
1 + ln

( 2ρD

γρ0(W̃ )

)]}
( 2µκT a2

h̄2 ln ρ0(W̃ )

a

)1/2
(18)

where

r0 = 2π7/2h̄2e4

µ3/2ε2vT E5/2
D

n.

Auger transition to a dislocation differs from transition to a zero-dimensional centre (e.g. an
impurity atom creating a single level in the bandgap) by a stronger dependence on the depth
of energy levels; the capture radius r (18) depends on E5/2

D compared with a factor of 3/2 for
the cross-section of capture by the dot centre. Besides, the capture radius by the dislocation
has a dependence on temperature. This dependence arises from the temperature dependence
of the energy at the saddle point, i.e. it is caused by the electrostatic barrier. Therefore the
expression r0 in (18) represents the capture radius by a neutral dislocation. The rest part of the
radius (18) describes electron tunnelling through a barrier of the charged dislocation.

4. Conclusions

The obtained radius of electron Auger capture by the edge dislocation is valid in the temperature
range restricted by the dangling bonds’ weak saturation condition α = (e2/εcκT ) � 1
from below and by the quasiclassical approximation applicability kρ0(k) � 1 from above.
For example, for germanium (ε = 16) this is an interval 200–500 K, where a significant
mechanism of nonradiative recombination is the multiphonon capture. The probability of
the multiphonon transition decreases exponentially with temperature due to the activation
character of the process, therefore it is reasonable to compare the capture radii for Auger and
multiphonon transitions in the bottom limit of the specified temperature interval. At T = 200 K
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and for the parameters µ ≈ 10−28 g, ED = 0.3 eV, a ∼ 10−8 cm and α = 0.5 the radii of
multiphonon (Vardanian 1979) and Auger captures are comparable at electron concentrations
n ≈ 5 × 1016 cm−3 and are of order ρph ∼ ρAuger ∼ 10−15 cm. At higher temperatures the
Auger mechanism can prevail only in the case of degenerated semiconductors, while at lower
temperatures and higher concentrations this mechanism will prevail even in non-degenerate
semiconductors.

More accurate evaluation of Auger capture radii requires an account of the exchange
term in the matrix element, as well as a description of band electrons by Bloch wavefunctions.
However, it unlikely that these can change the order of magnitude of the capture radii estimated
above.

The carrier mobility in a one-dimensional dislocation band is small which allowed us to
neglect the bandwidth in comparison with its depth in the calculation of the capture radius. If the
electron–phonon coupling in this band is strong enough, electron autolocalization, i.e. creation
of ‘one-dimensional polaron’, can be realized. In this case the Auger transitions will be
inevitably accompanied by phonon subsystem disturbance. However, the account of such
transitions is the subject of separate research.
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